

GOVERNMENT OF TAMILNADU DIRECTORATE OF TECHNICAL EDUCATION, CHENNAI STATE PROJECT COORDINATION UNIT (Established under Canada India Institutional Cooperation Project)

CURRICULUM

Course Name	ROBOTICS IN INDUSTRIAL AUTOMATION	
Course Code	ME/2020/040	
Course Duration	50 Hours	
Minimum Eligibility Criteria	ITI/10th/+2/Diploma/Graduates	
Pre-requisites (if any)	-	
Course Objectives	 Training module has been designed to provide the participants to Understand the necessary definitions, Components in Robotics and different types of Robots Know about hardware design aspects of Robot Understand the programming concepts of Robot Apply Block code programming to actuate the Robot 	
Course Outcomes	 At the end of training, the participants will be able to Execute the functioning of Robot. Utilize different Robot applications for Industrial applications. Use Debot Magician Robot for Robot arm application Prepare a model using 3D printer using Robot arm 	
Expected Job Boles	Robot Service Technician (Automation Engineer	
Course Outcomes	 Know about hardware design aspects of Robot Understand the programming concepts of Robot Apply Block code programming to actuate the Robot At the end of training, the participants will be able to Execute the functioning of Robot. Utilize different Robot applications for Industrial application Use Debot Magician Robot for Robot arm application 	

TEACHING AND SCHEME OF EXAMINATION						
Course Code	Course Name	Hours		Assessment Marks		Duration of
				Min	Max	Examination
			25	10	20	
ME/2020/041	ROBOTICS IN INDUSTRIAL AUTOMATION	Practical	25	40	80	3 Hours
		Total	50	50	100	

ME/2020/041 - ROBOTICS ININDUSTRIAL AUTOMATION

DETAILED SYLLABUS

Unit	Madulas	No. of Hours		
No.	Modules	Theory	Practical	
I.	Robotics Introduction and Hardware design	14 Hours		
1.1	Robotics Introduction Introduction – Definition, Robot Elements – links, joints, end effector, actuator, coordinates, Orientation of axis and movement – Pitch, Roll, Yaw, Types of industrial robots - Articulated robots, Cartesian robots, SCARA robots, delta robots, polar robots and cylindrical robots - introduction on robots	04		
1.2	Hardware design Introduction Sensing elements in robot – Accelerometer, limit switches, rotary encoders, Types of motors used in Industrial robots – stepper motor, servomotor, micro stepping, driving methods, Types of end effectors – gripper, suction, vision sensors - DOBOT - an overview, Architecture, Getting started	04		
1.3	 Practical: Different types of sensors Different types of actuators Micro stepping of DC motor vision using ultrasonic sensor Exploring DOBOT magician and its components Exploring DOBOT Studio driver installation and getting started 		06	
П	Programming concepts		10 Hours	
2.1	View–Based teaching/Recording Concept, Getting started with robot programming, Description of robotic movement – Point to Point movement – JUMP, MOVJ, MOVEL, Speed, Acceleration co- ordinate-Cartesian co-ordinate, polar Co-ordinate, Homing, looping, repeatability, collusion detection, position detection	04		
2.2	 Practical: Exploring 3 dimension Co-ordinates concepts Implementation of teach and playback concepts Implementing PTP movement using jump, MOVJ, MOVEL Implementing polar, Cartesian co-ordinate system using PTP movement Getting started with blocky code programming 		06	
ш	Blocky code Programming		lours	
3.1	Introduction - blocky commands – logical manipulation, controlloop structure, Conditional Statement, math logics, functiondeclaration, variable declaration, Programming concepts using API - Basic, Kinematic configuration, move, I/O configuration, Application control using Input/Output, Sensor control	04		

	Total hours	50	
	Total Theory and Practical hours	25	25
	 Implementation of pick and place using 6 axis robot Implementation of stacking using 6 axis robot 		
	Implementation of Robot writing by importing images		
	Getting started with Robot writing		07
	Implementation of convey control mode using I/O configuration		
4.4	Practical: → Implementation of convey control mode using I/O		
4.3	Application of Robots	02	
4.2	Arduino Based Robot Arm Introduction – Arduino, Hardware design guide, Robot assembling, programming concepts		
4.1	Writing / 3D printing Introduction – Writing/3D printing, Getting started with Writing, Importing Image, Configuration Parameter, Concepts of "followtrack", "Point into line", "playback path ", getting started with 3D printing, I/O configuration	04	
IV	Writing / 3D printing, Arduino Based Robot Arm and Application of Robots	16 Ho	urs
	 Implementation of logic manipulation using blocky code Implementation of control loop structure using blocky code Implementation of function declaration using blocky code Implementation of API using blocky codes Implementation of stacking using teach/playback and blocky code concept 		06
3.2	Practical:		

HARDWARE REQUIREMENT

S. NO.	LIST OF TOOLS / EQUIPMENTS	
1.	Windows 8 or 10 based computer systems	
2.	Debot Magician Robot	
3.	Arduino based Robot	

SOFTWARE REQUIREMENT

S. NO.	LIST OF SOFTWARE	
1.	The software to operate the Debot Magician Robot will come along with the Robot	

REFERENCE BOOKS

S. NO.	NAME OF THE BOOK	AUTHOR	PUBLISHER
01	Robotics and Industrial Automation	Rajput.R.K	S.CHAND

S. No.	Criteria for Assessment	
1.	A trainee will be assessed based on the performance in End Examination for Theory and Practical conducted internally in the Project Polytechnic College for a duration of 3 hours	
2.	A trainee must have 75% of attendance to appear for End examination in Theory and Practical.	
3.	The assessment for theory part will be based on the marks scored in the end examination or the knowledge bank of questions (1 word/objective type questions)	
4.	The assessment for practical part will be based on the marks scored in the end examination conducted by the Project Polytechnic and assessed by the Examiners approved by Strategic Plan Implementation Committee (SPIC) of the project polytechnic.	
5.	The passing criteria for successful completion of training is every trainee should score 50% of marks in theory and practical examination.	
6.	6. On successful completion of training, Certificate will be issued to the participants Directorate of Technical Education through the Project Polytechnics.	

ASSESSMENT AND CERTIFICATION

END EXAMINATION

ALLOCATION OF MARKS

S.NO	Description	Max.Marks	
1.	Theory Examination	20	
2.	Practical Examination		
	a)Aim and Procedure	20	
	b)Demonstration / Execution	25	
	c) Result & Viva Voce	15	
	d)Record	20	
	Total Marks	100	

THEORY MODEL QUESTION PAPER

ME/2020/040 - ROBOTICS IN INDUSTRIAL AUTOMATION

(Maximum Marks: 20)

(N.B: Answer any **Twenty** questions)

20x1= 20 Marks

- 1. What is Robot?
- 2. Which was the first industrial Robot?
- 3. What are the components of Robot?
- 4. What is mean actuators of the Robots?
- 5. Mention the types of motor used in industry Robot.
- 6. List the types of end effectors.
- 7. What are the various types of the sensors used in Robot?
- 8. Expand DOBOT.
- 9. Name the basic unit of a Robot which can be programmed to give instruction to the ROBOT.
- 10. Write the function of JUMP.
- 11. What is meant by looping?
- 12. Write the function of MOVJ.
- 13. Define point to point movement.
- 14. What is meant by homing?
- 15. Write any two blocky commands.
- 16. Name any two conditional statements.
- 17. Write Kinematic configuration.
- 18. How does 3D Printing works?
- 19. Write any two example of 3D Printing.
- 20. Define follow track.
- 21. What is playback path?
- 22. Name any two types of Arduino.
- 23. What is meant by Robot assembling?
- 24. Write any two application of Robot.
- 25. Do Arduino provides IDE environment